群馬大学

群馬大学医学部薬理学分野

群馬大学医学部薬理学分野

メイン画像
メイン画像
メイン画像
メイン画像

Tentang kami

Terima kasih atas kunjungannya ke website kami. Departemen Farmakologi baru saja di buka pada tanggal 1 Oktober 2020.

Beberapa dekade terakhir, jumlah penderita neuropskiatri seperti skizoprenia, demensia, dan autis atau yang dikenal sebagai autism spectrum disorder (ASD) meningkat pesat. Kami fokus dalam menangani penyebab dari kelainan tersebut. Sebagian besar dari pasien tersebut mengalami masalah gangguan transmisi synapse (transmisi sel neuron). Synpase merupakan rangkaian jaringan untuk transmisi informasi di antara jaringan syaraf yang kompleks. Kelainan dari transmisi synaptic diperkirakan sebagai salah satu penyebab dari kelainan neuropsikiartri. Untuk memahami mekanisme penyebab kelainan tersebut pada tingkat molekuler, kami melakukan studi dengan menggunakan mencit secara biokomiawi dan secara mikroskopik menggunakanan mikroskop fluorosensi resolusi tinggi seperti STED dan STORM.

Universitas Gunma berlokasi di bagian tengah negeri Jepang dan mudah diakses dari Tokyo. Universitas kami di kelilingi oleh alam yang indah. Melalui jendela di Departemen kami, dapat menikmati pemandangan yang indah pegunungan Akagi, Haruna dan Myogi. Kami selalu menantikan pergantian pemandangan yang indah sepanjang empat musim. Selama dekade ini, Universitas Gunma memiliki akar yang kuat dalam ilmu neurosains dan merupakan salah satu pusat riset neurosains terkemuka di Jepang. Universitas kami merupakan salah satu dari sedikit universitas yang dilengkapi dengan fasilitas mutahir untuk neurosains di Jepang.

Kami saat ini merekruit lulusan sarjana dan paska sarjana yang bertalenta. Marilah bergabung bersama kami! Mahasiswa akan belajar hal-hal menarik dan menyenangkan mengenai kemajuan neurosains di departemen kami. Kami akan mentrasfer ilmu pengetahuan dan memfasilitasi mahasiswa paska sarjana agar mampu berkerja sebagai profesional riset yang baik. Prestasi anda di departemen kami akan diabadikan di dalam textbook dan mengubah sejarah sains. Anda akan dapat menikmati kegembiraan di dunia sains.

Saya telah membimbing beberapa mahasiswa di tempat saya bekerja sebelumnya di Max Planck Institute of Experimental Medicine di Jerman. Para mahasiswa saya berasal dari berbagai negara, Jepang, Bulgaria, Turki, Polandia, Taiwan, India, Mesir, Serbia dan Jerman. Para alumni Doktor dari grup Max Planck bekerja di insitusi riset yang bereputasi, baik sebagai peneliti post-doktoral maupun pemimpin kelompok di universitas bergengsi. Berdasarkan pengalaman saya, saya dapat dan bersedia membimbing murid dari berbagai belahan dunia. Harapan saya, Doktor dari departemen kami di Universitas Gunma dapat mengembangkan sains   di berbagai belahan dunia di masa mendatang.

Silahkan menghubungi saya jika anda tertarik untuk bergabung di grup kami atau memerlukan informasi lebih lanjut. Alamat e-mail saya adalah kawabe(at)gunma-u.ac.jp

Lab Members

Professor
Hiroshi Kawabe
I love doing good science and training students to be good scientists.

Associate Professor
Kenji Hanamura
I study the mechanism of neuronal development and function. My ultimate goals are understanding the pathophysiology of various neuropsychiatric disorders and developing therapeutic methods for the disorders.

Assistant Professor
Hiroyuki Yamazaki
I will do my best to contribute to the further development of science in Japan.

Assistant Professor
Noriko Koganezawa
I am very much interested in the mechanism of memory formation, especially at the synaptic level.
I love bench work and enjoy it every day to make a breakthrough in neuroscienc.

Secretary
Tomoko Isono
I am organizing the lab so that lab members can concentrate on and enjoy their research.

Technical Assistant
Kazumi Kamiyama
I am doing my best to support daily experiments to develop science in the department.

Technical Assistant
Sachiko Tanaami
Lab works are a lot of fun, indeed. I am highly motivated to support research in the department.

Graduate Student
Mai Yamamura
Learning science in our department is a lot of fun. I proceed my project day by day to write manuscript in the next year.

Under Graduate Student
Banri Segawa
I will be a “two-way” professional; as a medical doctor and a neuroscientist!

Untuk Siswa

Bagaimana cara untuk bergabung di Departemen Farmakologi?

Ada tiga cara untuk bergabung bersama kami.

  1. Jika anda mahasiswa di Kampus Showa di Universitas Gunma, mampirlah sesudah selesai kuliah. Kami mempunyai satu mahasiswa dari program MD-PhD yang sudah bergabung dan bekerja dengan semangat di departemen kami.
  2. Jika anda ingin belajar sebagai mahasiswa paska sarjana di departemen kami, ikuti tes masuk untuk program master atau program doktoral. Kami menyambut mahasiswa dari negara manapun.
  3. Jika anda berasal dari perusahaan atau universitas dan ingin bekerja sama dengan kami atau menggunakan fasilitas kami, kami juga menyambut dengan baik. Silahkan kontak saya (kawabe(at)gunma-u.ac.jp).

Penelitian

Topik apakah yang kami perlajari?

1)Perkembangan dari super-resolved microscopy / mikroskop resolusi tinggi.

Seperti yang dapat di temukan di homepage kami, struktur yang dapat kami lihat dengan mikroskop STED sanget berbeda dengan apa yang dapat diobervasi dengan mikroskop konfokal biasa. Dengan super-resolved mikroskop, kami dapat menemukan struktur yang masih belum diketahui di sel atau di jaringan. Untuk mengeksplorasi struktur di in vivo dengan resolusi yang lebih baik, kami berusaha meningkatkan resolusi mikroskop STED dan mikroskop STORM yang kami miliki.

2)Memahami mekanisme penyebab dasar penyakit neuropsikiatri

Studi terbaru menunjukkan bahwa penyakit neuropsikiatri disebabkan oleh kelainan genetik. Ada yang disebabkan okeh kelainan monogenik dan ada yang di sebabkan oleh kelainan oliogenik. Dalama beberapa kasus, progress dari kelainan di pengaruhi oleh lingkungan. Kami mempelajari gen penyebab yang berhubungan dengan degradasi protein dan regulasi penyusunan cytoskeleton. Kami mempunyai beberapa transgenik model mencit yang berhubungan dengan kondisi tersebut. Kami akan mendalami penyebab dasar dari fisiologi dan penyakit neurologi menggunakan model mencit ini.

3)Memahami regulasi fungsi dasar dari sel saraf dengan memodifikasi protein-protein pada tahap posttranslasi.

Protein di sintesis melalui proses transkripsi dan dilanjutkan dengan translasi. Selanjutnya protein dapat berfungsi dengan berikatan dengan protein lain atau melalui reaksi katalisasi secara enzimatik. Fungsi dari protein tersebut dimodifikasi oleh modifikasi setelah proses translasi/ posttranslasi, termasuk fosforilasi dan ubiquitination, yang juga dapat menyebabkan degradasi dari protein yang dimodifikasi. Kami tertarik untuk memahami fungsi spesifik dari ubiquitination dan fosforilasi ekstraseluler dalam mengatur fungsi sel.

Daftar kolabrator internasional kami;

Kami memiliki kolaborasi secara internasional dengan kolega dari seluruh dunia, seperti institusi yang tertera dibawah ini. Para mahasiswa dan peneliti post-doktoral dapat mempunyai kesempatan untuk mengunjungi dan melakukan percobaan bersama mereka disana.

Jerman

Max Planck Institute of Experimental Medicine, Max Planck Institute for Biophysical Chemistry, Berlin Charite University, University of Göttingen, Hamburg Eppendorf University, University of Lübeck, Leipzig University, Ulm University, RWTH Aachen University, Max Planck Institute of Immunobiology and Epigenetics, The Leibniz Institute for Neurobiology

Swiss

ETH Zürich, University of Lausanne

Perancis

Paris-Sorbonne University

Inggris

University of Dundee

Spanyol

University of Barcelona

Belgia

University of Liège

Amerika

Harvard University, Stanford University, Thomas Jefferson University, University of Maryland, Northwestern University, Scripps institute, Salk Institute

Kanada

University of Toronto, University of British Columbia

Australia

University of Adelaide

Brasil

University of Sao Paulo

Cina

Nanjing University, Tianjin Medical University

Singapore

National University of Singapore

Publication

Publication by Prof. Kawabe

  • Ambrozkiewicz MC*, Borisova E, Schwark M, Ripamonti S, Schaub T, Smorodchenko A, Weber AI, Rhee HJ, Altas B, Yilmaz R, Mueller S, Piepkorn L, Horan ST, Straussberg R, Zaqout S, Jahn O, Dere E, Rosário M, Boehm-Sturm P, Borck G, Willig K, Rhee JS, Tarabykin V, Kawabe H.* (2020) The murine ortholog of Kaufman oculocerebrofacial syndrome protein Ube3b regulates synapse number by ubiquitinating Ppp3cc. Molecular Psychiatry accepted. *=Corresponding authors
  • Hoshino S, Kobayashi M, Tagawa R, Konno R, Abe T, Furuya K, Miura K, Wakasawa H, Okita N, Sudo Y, Mizunoe Y, Nakagawa Y, Nakamura T, Kawabe H, Higami Y. (2020) WWP1 knockout mice have exacerbated obesity-related phenotype in white adipose tissue but improved whole body glucose metabolism. FEBS Open Bio 10:306-315.
  • Luo L, Ambrozkiewicz MC, Benseler F, Chen C, Dumontier E, Falkner S, Furlanis E, Gomez AM, Hoshina N, Huang WH, M Hutchison MA, Itoh-Maruoka Y, Lavery LA, Li W, Maruo T, Motohashi J, Pai ELL, Pelkey KA, Pereira A, Philips T, Sinclair JL, Stogsdill JA, Traunmüller L, Wang J, Wortel J, You W, Abumaria N, Beier KT, Brose N, Burgess HA, Cepko CL, Cloutier JF, Eroglu C, Goebbels S, Kaeser PS, Kay JN, Lu W, Luo L, Mandai K, McBain CJ, Nave KA, Prado MAM, Prado VF, Rothstein J, Rubenstein JLR, Saher G, Sakimura K, Sanes JR, Scheiffele P, Takai Y, Umemori H, Verhage M, Yuzaki M, Zoghbi HY, Kawabe H*, Craig AM*. (2020) Optimizing nervous system-specific gene targeting with Cre driver lines: prevalence of germline recombination and influencing factors. Neuron 106:1–29.  *=Corresponding authors
  • Ambrozkiewicz MC*, Schwark M, Kishimoto-Suga M, Borisova E, Hori K, Salazar-Lázaro A, Rusanova A, Altas B, Piepkorn L, Bessa P, Schaub T, Zhang X, Rabe T, Ripamonti S, Rosário M, Akiyama H, Jahn O, Kobayashi T, Hoshino M, Tarabykin V, Kawabe H*. (2018) Polarity acquisition in cortical neurons is driven by synergistic action of Sox9-regulated Wwp1 and Wwp2 E3 ubiquitin ligases and intronic miR-140. Neuron 100:1097-1115. *=Corresponding authors
  • Ogawa M, Matsuda R, Tomokiyo M, Takada N, Yamamoto S, Shizukusihi S, Yamaji T, Yoshikawa Y, Yoshida M, Tanida I, Koike M, Murai M, Morita H, Takeyama H, Ryo A, Guan JL, Yamamoto M, Inoue JI, Yanagawa T, Fukuda M, Kawabe H, Ohnishi M. (2018) Molecular mechanisms of Streptococcus pneumoniae-targeted autophagy via pneumolysin, Golgi-resident Rab41, and Nedd4-1 mediated K63-linked ubiquitination. Cellular Microbiology 20:e12846.
  • Bhouri M, Morishita W, Temkin P, Goswami D, Kawabe H, Brose N, Südhof TC, Craig AM, Siddiqui TJ, Malenka R. (2018) Deletion of LRRTM1 and LRRTM2 in adult mice impairs basal AMPA receptor transmission and LTP in hippocampal CA1 pyramidal neurons. Proc. Natl. Acad. Sci. USA. 115:E5382-E5389.
  • Pei G, Buijze H, Liu H, Moura-Alves P, Goosmann C, Brinkmann V, Kawabe H, Dorhoi A, Kaufmann SHE. (2017) The E3 ubiquitin ligase NEDD4 enhances killing of membrane-perturbing intracellular bacteria by promoting autophagy. Autophagy 13:2041-2055.
  • Henshall TL, Manning JA, Alfassy OS, Boase NA, Goel P, Kawabe H, Kumar S. (2017) Deletion of Nedd4-2 results in progressive kidney disease in mice. Cell Death Differ. 24:2150-2160.
  • Lee JH, Jeon SA, Kim BG, Takeda M, Cho JJ, Kim DI, Kawabe H, Cho JY. (2017) Nedd4 deficiency in vascular smooth muscle promotes vascular calcification by stabilizing pSmad1. J. Bone Miner. Res. 32:927-938.
  • Crosby JR, Zhao C, Jiang C, Bai D, Katz M, Greenlee S, Kawabe H, McCaleb M, Rotin D, Guo S, Monia BP. (2017) Inhaled ENaC antisense oligonucleotide ameliorates cystic fibrosis-like lung disease in mice. J. Cyst. Fibros. 16:671-680.
  • Zhou Z, Kawabe H, Suzuki A, Shinmyozu K, Saga Y. (2017) NEDD4 controls spermatogonial stem cell homeostasis and stress response by regulating messenger ribonucleoprotein complexes. Nat. Commun. 8:15662.
  • Sigler A, Oh WC, Imig C, Altas B, Kawabe H, Cooper BH, Kwon HB, Rhee JS, Brose N. (2017) Formation and maintenance of functional spines in the absence of presynaptic glutamate release. Neuron 94:304-311.
  • Kawabe H, Mitkovski M, Kaeser PS, Hirrlinger J, Opazo F, Nestvogel D, Kalla S, Fejtova A, Verrier SE, Bungers SR, Cooper BH, Varoqueaux F, Wang Y, Nehring RB, Gundelfinger ED, Rosenmund C, Rizzoli SO, Südhof TC, Rhee JS, Brose N. (2017) ELKS1 localizes the synaptic vesicle priming protein bMunc13-2 to a specific subset of active zones. J. Cell Biol. 216:143-161.
  • Jiang C, Kawabe H, Rotin D. (2017) The ubiquitin ligase Nedd4L regulates the Na/K/2Cl co-transporter NKCC1/SLC12A2 in the colon. J. Biol. Chem. 292:137-145.
  • Ripamonti S, Ambrozkiewicz MC, Guzzi F, Gravati M, Biella G, Bormuth I, Hammer M, Tuffy LP, Sigler A, Kawabe H, Nishimori K, Toselli M, Brose N, Parenti M, Rhee JS. (2017) Transient oxytocin signaling primes the development and function of excitatory hippocampal neurons. elife 6:22466.
  • Lu C, Thoeni C, Connor A, Kawabe H, Gallinger S, Rotin D. (2016) Intestinal knockout of Nedd4 enhances growth of Apcmin tumors. Oncogene 35: 5839- 5849.
  • Canal M, Martín-Flores N, Pérez-Sisqués L, Romaní-Aumedes J, Altas B, Man HY, Kawabe H, Alberch J, Malagelada C. (2016) Loss of NEDD4 contributes to RTP801 elevation and neuron toxicity:implications for Parkinson’s disease. Oncotarget 7:58813-58831.
  • Lipina TV, Prasad T, Yokomaku D, Luo L, Connor SA, Kawabe H, Wang YT, Brose N, Roder JC, Craig AM. (2016) Cognitive deficits in Calsyntenin-2-deficient mice associated with reduced GABAergic transmission. Neuropsychopharmacology 41:802-810.
  • Ott C, Martens H, Hassouna I, Oliveira B, Erck C, Zafeiriou MP, Peteri UK, Hesse D, Gerhart S, Altas B, Kolbow T, Stadler H, Kawabe H, Zimmermann WH, Nave KA, Schulz-Schaeffer W, Jahn O, Ehrenreich H. (2015) Widespread expression of erythropoietin receptor in brain and its induction by injury. Mol. Med. 21:803-815.
  • Hsia HE, Kumar R, Luca R, Takeda M, Courchet J, Nakashima J, Wu S, Goebbels S, An W, Eickholt B, Polleux F, Rotin D, Wu H, Rossner M, Bagni C, Rhee JS, Brose N, Kawabe H*. (2014) Ubiquitin E3 ligase Nedd4-1 acts as a downstream target of PI3K/PTEN-mTORC1 signaling to promote neurite growth. Proc. Natl. Acad. Sci. USA. 111:13205-13210. *=Corresponding author
  • Pettem KL, Yokomaku D, Luo L, Linhoff MW, Prasad T, Connor SA, Siddiqui TJ, Kawabe H, Chen F, Zhang L, Rudenko G, Wang YT, Brose N, Craig AM. (2013) The specific α-Neurexin interactor Calsyntenin-3 promotes excitatory and inhibitory synapse development. Neuron 80:113-128.
  • Siddiqui TJ, Tari PK, Conner SA, Zhang P, Dobie FA, She K, Kawabe H, Wang YT, Brose N, Craig AM. (2013) An LRRTM4-HSPG complex mediates excitatory synapse development on dentate gyrus granule cells. Neuron 79:680-695.
  • Nagpal P, Plant PJ, Correa J, Bain A, Takeda M, Kawabe H, Rotin D, Bain JR, Batt JA. (2012) The ubiquitin ligase Nedd4-1 participates in denervation-induced skeletal muscle atrophy in mice. PLOS One 7:e46427.
  • Cooper B, Hemmerlein M, Ammermüller J, Imig C, Reim K, Lipstein N, Kalla S, Kawabe H, Brose N, Brandstätter JH, Varoqueaux F. (2012) Munc13-independent vesicle priming at mouse photoreceptor ribbon synapses. J. Neurosci. 32:8040-8052.
  • Kimura T*, Kawabe H*, Jiang C, Zhang W, Xiang YY, Lu C, Salter MW, Brose N, Lu WY, Rotin D. (2011) Deletion of the ubiquitin ligase Nedd4L in lung epithelia causes cystic fibrosis-like disease. Proc. Natl. Acad. Sci. USA. 108:3216-3221. *=Equal contribution
  • Kawabe H*, Neeb A, Dimova K, Young SM Jr, Takeda M, Katsurabayashi S, Mitkovski M, Malakhova OA, Zhang DE, Umikawa M, Kariya K, Goebbels S, Nave KA, Rosenmund C, Jahn O, Rhee JS, Brose N*. (2010) Regulation of Rap2A by the ubiquitin ligase Nedd4-1 controls neurite development. Neuron 65:358-372. *=Corresponding authors
  • Fouladkou F, Lu C, Jiang C, Zhou L, She Y, Walls JR, Kawabe H, Brose N, Henkelman RM, Huang A, Bruneau BG, Rotin D. (2010) The ubiquitin ligase NEDD4-1 is required for heart development and is a suppressor of thrombospondin-1. J. Biol. Chem. 285:6770-6780.
  • Gómez-Varela D, Kohl T, Schmidt M, Rubio ME, Kawabe H, Nehring RB, Schäfer S, Stühmer W, Pardo LA. (2010) Characterization of Eag1 channel lateral mobility in rat hippocampal cultures by single-particle-tracking with quantum dots. PLOS One 5:e8858.
  • Trimbuch T, Beed P, Vogt J, Schuchmann S, Maier N, Kintscher M, Breustedt J, Schuelke M, Streu N, Kieselmann O, Brunk I, Laube G, Strauss U, Battefeld A, Wende H, Birchmeier C, Wiese S, Sendtner M, Kawabe H, Kishimoto-Suga M, Brose N, Baumgart J, Geist B, Aoki J, Savaskan NE, Bräuer AU, Chun J, Ninnemann O, Schmitz D, Nitsch R. (2009) Synaptic PRG-1 modulates excitatory transmission via lipid phosphate-mediated signaling. Cell 138:1222-1235.
  • Fouladkou F, Landry T, Kawabe H, Neeb A, Lu C, Brose N, Stambolic V, Rotin D. (2008) The ubiquitin ligase Nedd4-1 is dispensable for the regulation of PTEN stability and localization. Proc. Natl. Acad. Sci. USA. 105:8585-8590.
  • Dimova K*, Kawabe H*, Betz A, Brose N, Jahn O. (2006) Characterization of the Munc13-calmodulin interaction by photoaffinity labeling. Biochim. Biophys. Acta Mol. Cell Res. 1763:1256-1265. *=Equal contribution
  • Andrews-Zwilling YS, Kawabe H, Reim K, Varoqueaux F, Brose N. (2006) Binding to Rab3A-interacting molecule RIM regulates the presynaptic recruitment of Munc13-1 and ubMunc13-2. J. Biol. Chem. 281:19720-19731.
  • Kawabe H, Sakisaka T, Yasumi M, Shingai T, Izumi G, Nagano F, Deguchi-Tawarada M, Takeuchi M, Nakanishi H, Takai Y. (2003) A novel rabconnectin-3-binding protein that directly binds a GDP/GTP exchange protein for Rab3A small G protein implicated in Ca2+-dependent exocytosis of neurotransmitter. Genes Cells 8:537-546.
  • Nagano F*, Kawabe H*, Nakanishi H, Shinohara M, Deguchi-Tawarada M, Takeuchi M, Sasaki T, Takai Y. (2002) Rabconnectin-3, a novel protein that binds both GDP/GTP exchange protein and GTPase-activating protein for Rab3 small G protein family. J. Biol. Chem. 277:629-632. *=Equal contribution
  • Kawabe H, Nakanishi H, Asada M, Fukuhara A, Morimoto K, Takeuchi M, Takai Y. (2001) Pilt, a novel peripheral membrane protein at tight junctions in epithelial cells. J. Biol. Chem. 276:48350-48355.
  • Deguchi M, Iizuka T, Hata Y, Nishimura W, Hirao K, Yao I, Kawabe H, Takai Y. (2000) PAPIN. A novel multiple PSD-95/Dlg-A/ZO-1 protein interacting with neural plakophilin-related armadillo repeat protein/delta-catenin and p0071. J. Biol. Chem. 275:29875-29880.
  • Kikyo M, Matozaki T, Kodama A, Kawabe H, Nakanishi H, Takai Y. (2000) Cell-cell adhesion-mediated tyrosine phosphorylation of nectin-2delta, an immunoglobulin-like cell adhesion molecule at adherens junctions. Oncogene 19:4022-4028.
  • Yao I, Ohtsuka T, Kawabe H, Matsuura Y, Takai Y, Hata Y. (2000) Association of membrane-associated guanylate kinase-interacting protein-1 with Raf-1. Biochem. Biophys. Res. Commun. 270:538-542.
  • Hirao K, Hata Y, Deguchi M, Yao I, Ogura M, Rokukawa C, Kawabe H, Mizoguchi A, Takai Y. (2000) Association of synapse-associated protein 90/ postsynaptic density-95-associated protein (SAPAP) with neurofilaments. Genes Cells 5:203-210.
  • Hirao K, Hata Y, Yao I, Deguchi M, Kawabe H, Mizoguchi A, Takai Y. (2000) Three isoforms of synaptic scaffolding molecule and their characterization: multimerization between the isoforms and their interaction with N-methyl-D-aspartate receptors and SAP90/PSD-95-associated protein. J. Biol. Chem. 275:2966-2972.
  • Kawabe H, Hata Y, Takeuchi M, Ide N, Mizoguchi A, Takai Y. (1999) nArgBP2, a novel neural member of ponsin/ArgBP2/vinexin family that interacts with synapse-associated protein 90/postsynaptic density-95-associated protein (SAPAP). J. Biol. Chem. 274:30914-30918.
  • Shimizu K, Kawabe H, Minami S, Honda T, Takaishi K, Shirataki H, Takai Y. (1996) SMAP, an Smg GDS-associating protein having arm repeats and phosphorylated by Src tyrosine kinase. J. Biol. Chem. 271:27013-27017.

Publication by the former research group of the Department of Neurobiology and Behavior

  • Yin XL, Jia QF, Zhang GY, Zhang JP, Shirao T, Jiang CX, Yin XY, Liu YS, Chen P, Gu XC, Qian ZK, Yin GZ, Sen Xia H, Hui L. (2019) Association between decreased serum TBIL concentration and immediate memory impairment in schizophrenia patients. Sci. Rep. 9:1622.
  • Miki D, Kobayashi Y, Okada T, Miyamoto T, Takei N, Sekino Y, Koganezawa N, Shirao T, Saito Y. (2019) Characterization of functional primary cilia in human induced pluripotent stem cell-derived neurons. Neurochem. Res. 44:1736-1744.
  • Mitsuoka T, Hanamura K, Koganezawa N, Kikura-Hanajiri R, Sekino Y, Shirao T. (2019) Assessment of NMDA receptor inhibition of phencyclidine analogues using a high-throughput drebrin immunocytochemical assay. J. Pharmacol. Toxicol. Methods. 106583
  • Hanamura K, Koganezawa N, Kamiyama K, Tanaka N, Oka T, Yamamura M, Sekino Y, Shirao T. (2019) High-content imaging analysis for detecting the loss of drebrin clusters along dendrites in cultured hippocampal neurons. J. Pharmacol. Toxicol. Methods. 106607.
  • Puspitasari A, Yamazaki H, Kawamura H, Nakano T, Takahashi A, Shirao T, Held KD. (2019) X-irradiation of developing hippocampal neurons causes changes in neuron population phenotypes, dendritic morphology and synaptic protein expression in surviving neurons at maturity. Neurosci. Res. S0168-0102: 30320-7.
  • Miao S, Koganezawa N, Hanamura K, Puspitasari A, Shirao T. (2018) N-methyl-D-aspartate receptor mediates X-irradiation-induced drebrin decrease in hippocampus. Kitakanto Medical Journal 68: 111-115
  • Hanamura K, Kamata Y, Yamazaki H, Kojima N, Shirao T. (2018) Isoform-dependent regulation of drebrin dynamics in dendritic spines. Neuroscience 379: 67–76
  • Yamazaki H, Sasagawa Y, Yamamoto H, Bito H, Shirao T. (2018) CaMKIIβ is localized in dendritic spines as both drebrin-dependent and drebrin-independent pools. J. Neurochem. 146:145-159.
  • Yasuda H, Kojima N, Yamazaki H, Hanamura K, Sakimura K, Shirao T. (2018) Drebrin isoforms critically regulate NMDAR- and mGluR-dependent LTD induction. Front. Cell. Neurosci. 12:330.
  • 小金澤紀子、花村健次、白尾智明 (2017) 「ヒトiPS細胞由来神経細胞を用いた医薬品評価系の現状について」日本薬理学雑誌  149: 104-109
  • Shirao T, Hanamura K, Koganezawa N, Ishizuka Y, Yamazaki H, Sekino Y. (2017) The role of drebrin in neurons. J. Neurochem. 141:819-834.
  • Koganezawa N, Hanamura K, Sekino Y, Shirao T. (2017) The role of drebrin in dendritic spines. Mol. Cell. Neurosci. 84:85-92.
  • Li B, Ding S, Feng N, Mooney N, Ooi YS, Renf L, Diep J, Kelly MR, Yasukawa LL, Patton JT, Yamazaki H, Shirao T, Jackson PK, Greenberg HB. (2017) Drebrin restricts rotavirus entry by inhibiting dynamin-mediated endocytosis. Proc. Natl. Acad. Sci. USA. 114:E3642-E3651.
  • Kajita Y, Kojima N, Koganezawa N, Yamazaki H, Sakimura K, Shirao T. (2017) Drebrin E regulates neuroblast proliferation and chain migration in the adult brain. Eur. J. Neurosci. 46:2214-2228.
  • Hanamura K, Washburn HR, Sheffler-Collins SI, Xia NL, Henderson N, Tillu DV, Hassler S, Spellman DS, Zhang G, Neubert TA, Price TJ, Dalva MB. (2017) Extracellular phosphorylation of a receptor tyrosine kinase controls synaptic localization of NMDA receptors and regulates pathological pain. PLoS Biol. 15:e2002457.
  • Shirao T, Sekino Y. (Eds.) (2017) Drebrin. (Advances in Experimental Medicine and Biology, vol 1006) Tokyo, Springer
  • Sekino Y, Koganezawa N, Mizui T, Shirao T. (2017) Role of Drebrin in Synaptic Plasticity. Adv. Exp. Med. Biol. 1006:183-201.
  • Yamazaki H, Shirao T. (2017) Homer, Spikar, and Other Drebrin-Binding Proteins in the Brain. Adv. Exp. Med. Biol. 1006:249-268.
  • Shirao T, Koganezawa N, Yamazaki H, Hanamura K, Imamura K. (2017) Localization of Drebrin: Light Microscopy Study. Adv. Exp. Med. Biol. 1006:105-118.
  • Shirao T, Sekino Y. (2017) General Introduction to Drebrin. Adv. Exp. Med. Biol. 1006:3-22.
  • Ishizuka Y, Hanamura K. (2017) Drebrin in Alzheimer’s Disease. Adv. Exp. Med. Biol. 1006:203-223.
  • Hanamura K. (2017) Drebrin in Neuronal Migration and Axonal Growth. Adv. Exp. Med. Biol. 1006:141-155.
  • Puspitasari A, Koganezawa N, Ishizuka Y, Kojima N, Tanaka N, Nakano T, Shirao T. (2016) X Irradiation Induces Acute Cognitive Decline via Transient Synaptic
  • Dysfunction. Radiat. Res. 185:423-30.
  • Fujieda T, Koganezawa N, Ide Y, Shirao T, Sekino Y. (2015) An Inhibitory Pathway Controlling the Gating Mechanism of the Mouse Lateral Amygdala Revealed by Voltage-Sensitive Dye Imaging. Neuroscience Letters 590:126-131.
  • Xu S, Buraschi S, Morcavallo A, Genua M, Shirao T, Peiper SC, Gomella LG, Birbe R, Belfiore A, Iozzo RV, Morrione A. (2015) A novel role for drebrin in regulating progranulin bioactivity in urothelial cancer. Oncotarget 6:10825-39.
  • Ishizuka Y, Shimizu H, Takagi E, Kato M, Yamagata H, Mikuni M, Shirao T. (2014) Histone deacetylase mediates the decrease in drebrin cluster density induced by amyloid beta oligomers. Neurochem. Int. 76:114-121.
  • Tanabe K, Yamazaki H, Inaguma Y, Asada A, Kimura T, Takahashi J, Taoka M, Ohshima T, Furuichi T, Isobe T, Nagata K, Shirao T,  Hisanaga S. (2014) Phosphorylation of drebrin by cyclin-dependent kinase 5 and its role in neuronal migration. PLOS One 9:e92291.
  • Ishikawa M, Shiota J, Ishibashi1 Y, Hakamata T, Shoji S, Fukuchi M, Masaaki Tsuda M, Shirao T, Sekino Y, Baraban JM, Tabuchi A. (2014) Cellular localization and dendritic function of rat isoforms of the SRF coactivator MKL1 in cortical neurons. NeuroReport 25:585-592.
  • Mizui T,Sekino Y, Yamazaki H, Ishizuka Y, Takahashi H, Kojima N, Kojima M, Shirao T. (2014) Myosin Ⅱ ATPase activity mediates the long-term potentiation-induced exodus of stable F-actin bound by drebrin A from dendritic spines. PLOS One 9: e85367.
  • Yamazaki H, Kojima N, Kato K, Hirose H, Iwasaki T, Mizui T, Takahashi H, Hanamura K, Roppongi RT, Koibuchi N, Sekino Y, Mori N, Shirao T. (2013) Spikar, a novel drebrin-binding protein, regulates the formation and stabilization of dendritic spines. J. Neurochem. 128:507-522.
  • 白尾智明、山崎博幸 (2013)「樹状突起棘(スパイン)のアクチンフィラメントと微小管」 Clinical Neuroscience 31: 1302-1395.
  • Ishikawa M, Shiota J, Ishibashi Y, Hakamata T, Shoji S, Fukuchi M, Tsuda M, Shirao T, Sekino Y, Ohtsuka T, Baraban JM, Tabuchi A. (2013) Identification, expression and characterization of rat isoforms of the SRF coactivator MKL1. FEBS Open Bio. 3:387-393.
  • Ishizuka Y, Kakiya N, Witters LA, Oshiro N, Shirao T, Nawa H, Takei N. (2013) AMP-activated protein kinase (AMPK) counteractsbrain-derived neurotrophic factor (BDNF)-induced mammalian target of rapamycin complex 1 (mTORC1) signaling in neurons. J. Neurochem. 127:66-77.
  • Shirao T, Gonzalez-Billault C. (2013) Actin filaments and microtubules in dendritic spines. J. Neurochem. 126:155-164.
  • Roppongi RT, Kojima N, Hanamura K, Yamazaki H, Shirao T. (2013) Selective reduction of drebrin and actin in dendritic spines of hippocampal neurons by activation of 5-HT2A receptors. Neurosci. Lett. 547:76-81.
  • Shirai K, Mizui T, Suzuki Y, Okamoto M, Hanamura K, Yoshida Y, Hino M, Noda S, AL-Jahdari WS, Chakravarti A, Shirao T, Nakano T. (2012) X-Irradiation Changes Dendritic Spine Morphology and Density through Reduction of Cytoskeletal Proteins in Mature Neurons. Radiation Research 179:630-636.
  • Canto CB, Koganezawa N, Beed P, Moser EI, Witter MP. (2012) All layers of medial entorhinal cortex receive presubicular and parasubicular inputs. J. Neurosci. 32: 17620-17631.
  • Kato K, Shirao T, Yamazaki H, Imamura K, Sekino Y. (2012) Regulation of AMPA receptor recruitment by the actin binding protein drebrin in cultured hippocampal neurons. J. Neurosci. Neuroeng. 1: 153-160.
  • Tanaka K, Sato K, Yoshida T, Fukuda T, Hanamura K, Kojima N, Shirao T, Yanagawa T, and Watanabe H. (2011) Evidence for cell density affecting C2C12 myogenesis: possible regulation of myogenesis by cell-cell communication. Muscle and Nerve 44:968-977.
  • Kobayashi-Yamazaki C, Shirao T, Sasagawa Y, Maruyama Y, Akita H, Saji M, Sekino Y. (2011) Lesions of the supramammillary nucleus decrease self-grooming behavior of rats placed in an open field The Kitakanto Medical Jorunal 61:287-292.
  • Han W, Takamatsu Y, Yamamoto H, Kasai S, Endo S, Shirao T, Kojima N, Ikeda K. (2011) Inhibitory role of inducible cAMP early repressor (ICER) in methamphetamine-induced locomotor sensitization. PLOS One 6:e21637.
  • Okamoto T, Endo S, Shirao T,  Nagao S. (2011) Role of Cerebellar Cortical Protein Synthesis in Transfer of Memory Trace of Cerebellum-Dependent Motor Learning. J. Neurosci. 31:8958-66.
  • Kambe T, Motoi Y, Inoue R, Kojima N, Tada N, Kimura T, Sahara N, Yamashita S, Mizoroki T, Takashima A, Shimada K, Ishiguro K, Mizuma H, Onoe H, Mizuno Y, Hattori N. (2011) Differential regional distribution of phosphorylated tau and synapse loss in the nucleus accumbens in tauopathy model mice. Neurobiol. Dis. 42:404-414.
  • Kaminuma T, Suzuki Y, Shirai K, Mizui T, Noda S, Yosida Y, Funayama T, Takahasi T, Kobayashi Y, Shirao T, Nakano T. (2010) Effectiveness of carbon-ion beams for apoptosis induction in rat primary immature hippocampal neurons. J. Rad. Res. 51:627-631.
  • Hanamura K, Mizui T, Kakizaki T, Roppongi TR, Yamazaki H, Yanagawa Y, Shirao T (2010) Low accumulation of drebrin at glutamatergic postsynaptic sites on GABAergic neurons. Neuroscience 169:1489-1500.
  • Perez-Martinez M, Gordon-Alonso M, Cabrero JR, Barrero-Villar M, Rey M, Mittelbrunn M, Lamana A, Morlino G, Calabia C, Yamazaki H, Shirao T, Vazquez J, Gonzalez-Amaro R, Veiga E, Sanchez-Madrid F. (2010) F-actin-binding protein drebrin regulates CXCR4 recruitment to the immune synapse. J. Cell Sci. 123:1160-1170.
  • Mercer JC, Mottram LF Qi Q, Lee YC, Bruce D, Iyer A, Yamazaki H, Shirao T, Choe MH, Peterson BR, August A. (2010) Chemico-Genetic Identification of Drebrin as a Regulator of Calcium Responses. Int. J. Biochem. Cell Biol. 42:337-345.
  • Kojima N, Hanamura K, Yamazaki H, Ikeda T, Itohara S, Shirao T. (2010) Genetic disruption of the alternative splicing of drebrin gene impairs context-dependent fear learning in adulthood. Neuroscience 165: 138-150.
  • Okamoto M, Suzuki Y, Shirai K, Mizui T, Yoshida Y, Noda S, Al-Jahdari WS, Shirao T, Nakano T. (2009) Effect of Irradiation on the Development of Immature Hippocampal Neurons In Vitro. Radiat. Res. 172:718-724.
  • Aoki C, Kojima N, Sabaliauskas N, Shah L, Oakford J, Ahmed T, Yamazaki H, Hanamura K, Shirao T. (2009) Drebrin A Knock-Out Eliminates the Rapid Form of Homeostatic Synaptic Plasticity at Excitatory Synapses of Intact Adult Cerebral Cortex. J. Comp. Neurol. 517:105-121.
  • Ito M, Shirao T, Doya K, Sekino Y. (2009) Three-dimensional distribution of Fos-positive neurons in the supramammillary nucleus of the rat exposed to novel environment. Neurosci. Res. 64:397-402.
  • Mizui T, Kojima N, Yamazaki H, Katayama M, Hanamura K, Shirao T. (2009) Drebrin E is involved in the mechanism regulating axonal growth through actin-myosin interactions. J. Neurochem. 109:611-622.
  • Takahashi T, Yamazaki H, Hanamura K, Sekino Y, Shirao T. (2009) AMPA receptor inhibition causes abnormal dendritic spines by destabilizing drebrin. J. Cell. Sci. 122:1211-1229.
  • Ivanov A, Esclapez M, Pellegrino1 C, Shirao T, Ferhat L. (2009) Drebrin A regulates the dendritic spine plasticity and synaptic function in cultured hippocampal neurons. J. Cell. Sci. 122: 524-534.
  • Kojima N, Borlikova G, Sakamoto T, Yamada K, Ikeda T, Itohara S, Niki H, Endo S. (2008) Inducible cAMP early repressor acts as a negative regulator for kindling epileptogenesis and long-term fear memory. J. Neurosci. 28:6459-6472.
  • Song M, Kojima N, Hanamura K, Sekino Y, Inoue KH, Mikuni M, Shirao T. (2008) Expression of drebrin E in migrating neuroblasts in adult rat brain: coincidence between drebrin E disappearance from cell body and cessation of migration. Neuroscience 152:670-682.
  • Kobayashi C, Aoki C, Kojima N, Yamazaki H, Shirao T. (2007) Drebrin A content correlates with spine head size in the adult mouse cerebral cortex. J. Comp. Neurol. 503:618-26.
  • Sekino Y, Kojima N, Shirao T. (2007) Role of actin cytoskeleton in dendritic spine morphogenesis. Neurochem. Int. 51:92-104.
  • Kato K, Sekino Y, Takahashi H, Yasuda H, Shirao T. (2007) Increase of AMPA receptors-mediated miniature EPSC amplitude after chronic NMDA receptor blockade in cultured hippocampal neurons. Neurosci. Lett. 418: 4-8.
  • Kojima N, Shirao T. (2007) Synaptic dysfunction and disruption of the postsynaptic drebrin-actin complex: the study of neurological disorders accompanied by cognitive deficits. Neurosci. Res. 58: 1-5.
  • Majoul I, Shirao T, Sekino Y, Duden R. (2007) Many faces of Drebrin: from building dendritic spines and stabilizing gap junctions to shaping neurite-like cell processes. Histochem. Cell. Biol. 127: 355-361.
  • Shirai K, Mizui T, Suzuki Y, Kobayashi Y, Nakano T, Shirao T. (2006) Differential effects of x-irradiation on immature and mature hippocampal neurons in vitro. Neurosci. Lett. 399: 57-60.
  • Chang EH, Savage MJ, Flood DG, Thomas JM, Levy RB, Mahadomrongkul V, Shirao T, Aoki C, Huerta PT. (2006) AMPA receptor downscaling at the onset of Alzheimer’s pathology in double knock-in mice. Proc. Natl. Acad. Sci. USA. 103: 3410-3415.
  • Fujisawa S, Shirao T, Aoki C. (2006) In vivo, competitive blockade of NMDA receptors induces rapid shape change of post-synaptic spines and F-actin reorganization within dendritic spines of adult rat cortex. Neuroscience 140:1177-1187.
  • Takahashi H, Mizui T, Shirao T. (2006) Downregulation of drebrin A expression suppresses synaptic targeting of NMDA receptors in developing hippocampal neurons. J. Neuochem. 97(s1):110-115.
  • Sekino Y, Tanaka S, Hanamura K, Yamazaki H, Sasagawa Y, Xue Y, Hayashi K, Shirao T. (2006) Activation of N-methyl-D-aspartate receptor induces a shift of drebrin distribution: disappearance from dendritic spines and appearance in dendritic shafts. Mol. Cell. Neurosci. 31: 493-504.
  • Mahadomrongkul V, Huerta PT, Shirao T, Aoki C. (2005) Stability of the distribution of spines containing drebrin A in the sensory cortex layer I of mice expressing mutated APP and PS1 genes. Brain Res. 1064: 66-74.
  • Mizui T, Takahashi H, Sekino Y, Shirao T. (2005) Overexpression of drebrin A in immature neurons induces the accumulation of F-actin and PSD-95 into dendritic filopodia, and the formation of large abnormal protrusions. Mol. Cell. Neurosci. 30: 149-157.
  • Aoki C, Sekino Y, Hanamura K, Fujisawa S, Mahadomrongkul V, Ren Y, Shirao T. (2005) Drebrin A is a Postsynaptic Protein that Localizes in vivo to the Submembranous Surface of Dendritic Sites Forming Excitatory Synapses. J. Comp. Neurol. 483:383-402.

群馬大学 医学部
薬理学分野

〒371-8511 群馬県前橋市昭和町3-39-22

tel: 027-220-8052 fax: 027-220-8053

Copyright © 群馬大学医学部薬理学分野
トップへ戻るボタン